
Huffman Coding:
An Application of Binary Trees and Priority

Queues

Encoding and Compression of Data

• Fax Machines
• ASCII
• Variations on ASCII

– min number of bits needed
– cost of savings
– patterns
– modifications

Purpose of Huffman Coding

• Proposed by Dr. David A. Huffman in 1952
– “A Method for the Construction of Minimum

Redundancy Codes”

• Applicable to many forms of data
transmission
– Our example: text files

The Basic Algorithm

• Huffman coding is a form of statistical coding
• Not all characters occur with the same

frequency!
• Yet all characters are allocated the same amount

of space (ASCII)

– 1 char = 1 byte, be it e or x

The Basic Algorithm

• Any savings in tailoring codes to frequency of
character?

• Code word lengths are no longer fixed like ASCII.
• Code word lengths vary and will be shorter for

the more frequently used characters.

a b c d e f

Freq 45000 13000 12000 16000 9000 5000

A fixed lenght 000 001 010 011 100 101

Variable length 0 101 100 111 1101 1100

Suppose that we have a 100,000 character
data file that we wish to store . The file
contains only 6 characters, appearing with
the following frequencies:

A binary code encodes each character as a
binary string or codeword.
We would like to find a binary code that
encodes the file using as few bits as
possible, ie., compresses it as much as
possible.

In a fixed-length code each codeword has the
same length. In a variable-length code
codewords may have different lengths. Here
are examples of fixed and variable legth
codes for our problem (note that a fixed-
length code must have at least 3 bits per
codeword).
The fixed length-code requires
100,000*3=300,000 bits to store the file.

a b c d e f

Freq 45000 13000 12000 16000 9000 5000

A fixed lenght 000 001 010 011 100 101

Variable length 0 101 100 111 1101 1100

The variable-length code

The variable-length code uses only
(45*1+13*3+12*3+16*3+9*4+5*4)*1000=224,000bits

saving a lot of space
(300,000 vs 224,000)

Code
• Code is a set of codewords
• C1={000,001,010,011,100,101}
• C2={0,101,100,111,1101,1100}
 a b c d e f

A fixed lenght 000 001 010 011 100 101

Variable length 0 101 100 111 1101 1100

Example:
Then bad is encoded into
Fixed Lenght: 001000011
Variable Length: 1010111

Decoding

• Given an encoded message, decoding is the
process of turning it back into the original
message. A message is uniquely decodable

• Given codewords

• 0110000111 fixed length
• 001010101 variable length

a b c d e f

A fixed lenght 000 001 010 011 100 101

Variable length 0 101 100 111 1101 1100

Decoding

• Given codewords
• 011 000 011
 d a d
• 001010101 variable length
• 0 0 101 0 101
 a a b a b

a b c d e f

A fixed lenght 000 001 010 011 100 101

Variable length 0 101 100 111 1101 1100

Decoding Example

• Relative to above codewords 1101111 is not
uniquely decoded since it could have encoded
either bad or acad

110 1 111
 b a d
1 10 1 111
 a c a d

a b c d

Variable length
codewords

1 110 10 111

Prefix-Codes

Fixed-length codes are always uniquely
decodable(why)

Prefix Code: A code is called a prefix (free) code if
no codeword is a prefix of another one.
Example

İs a prefix code.

a b c d e f

Variable length 0 101 100 111 1101 1100

Prefix Code
Important Fact: Every message encoded by a
prefix free code is uniquely decodable. Since no
code- word is a prefix of any other we can
always find the first codeword in a message,
peel it off, and continue decoding.

a b c d e f

Variable length 0 101 100 111 1101 1100

Example
01011001110001100 = abcdaaf
We are therefore interested in finding
good (best compression) prefix-free
codes.

The (Real) Basic Algorithm
 1. Scan text to be compressed and tally
 occurrence of all characters.

 2. Sort or prioritize characters based on
 number of occurrences in text.

 3. Build Huffman code tree based on
 prioritized list.

 4. Perform a traversal of tree to determine
 all code words.

 5. Scan text again and create new file
 using the Huffman codes.

Building a Tree
Scan the original text

• Consider the following short text:

 Eerie eyes seen near lake.

• Count up the occurrences of all characters in the

text

Building a Tree
Scan the original text

 Eerie eyes seen near lake.
• What characters are present?

E e r i space
y s n a r l k .

Building a Tree
Scan the original text

Eerie eyes seen near lake.
• What is the frequency of each character in the text?

Char Freq. Char Freq. Char Freq.
 E 1 y 1 k 1
 e 8 s 2 . 1
 r 2 n 2
 i 1 a 2
 space 4 l 1

Building a Tree
Prioritize characters

• Create binary tree nodes with character
and frequency of each character

• Place nodes in a priority queue
– The lower the occurrence, the higher the

priority in the queue

Building a Tree
Prioritize characters

Uses binary tree nodes

struct _HuffNode
{
 char myChar;
 int myFrequency;
 struct HuffNode *left, *right;
}

priorityQueue myQueue;

Building a Tree

• The queue after inserting all nodes

• Null Pointers are not shown

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

Node

Priority
Queue

Building a Tree
• While priority queue contains two or more nodes

– Create new node
– Dequeue node and make it left subtree
– Dequeue next node and make it right subtree
– Frequency of new node equals sum of frequency of left

and right children
– Enqueue new node back into queue

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

Building a Tree

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

Building a Tree

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

Building a Tree

E
1

i
1

n

2

a

2
sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

Building a Tree

E
1

i
1

n

2

a

2
sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

Building a Tree

E
1

i
1

sp

4

e

8
2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

Building a Tree

E
1

i
1

sp

4

e

8
2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

Building a Tree

E
1

i
1

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

Building a Tree

E
1

i
1

sp

4

e

8 2

y
1

l
1

2
k
1

.
1

2

r
2

s
2

4

n
2

a
2

4 4

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4 4

6

Building a Tree

E
1

i
1

sp
4

e

8
2

y
1

l
1

2

k
1

.
1

2
r
2

s
2

4

n
2

a
2

4 4 6

What is happening to the characters
with a low number of occurrences?

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4 6

8

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4 6 8

Building a Tree

E
1

i
1

sp
4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6

8

10

Building a Tree

E
1

i
1

sp
4

e

8

2

y
1

l
1

2

k
1

.
1

2 r
2

s
2

4

n
2

a
2

4 4
6

8 10

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6

8

10

16

Building a Tree

E
1

i
1

sp
4

e
8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6

8

10 16

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

•After
enqueueing
this node
there is only
one node left
in priority
queue.

Building a Tree

Dequeue the single node
left in the queue.

This tree contains the
new code words for each
character.

Frequency of root node
should equal number of
characters in text.

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

Eerie eyes seen near lake. 26 characters

Encoding the File
Traverse Tree for Codes

• Perform a traversal of the
tree to obtain new code
words

• Going left is a 0
going right is a 1

• code word is only completed
when a leaf node is reached

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

Encoding the File
Traverse Tree for Codes

Char Code
E 0000
i 0001
y 0010
l 0011
k 0100
. 0101
space 011
e 10
r 1100
s 1101
n 1110
a 1111

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

Encoding the File
• Rescan text and encode file

using new code words
Eerie eyes seen near lake.

Char Code
E 0000
i 0001
y 0010
l 0011
k 0100
. 0101
space 011
e 10
r 1100
s 1101
n 1110
a 1111

0000101100000110011
1000101011011010011
1110101111110001100
1111110100100101
• Why is there no need
for a separator
character?

Encoding the File
Results

• Have we made things any
better?

• 73 bits to encode the text
• ASCII would take 8 * 26 =

208 bits

0000101100000110011
1000101011011010011
1110101111110001100
1111110100100101

If modified code used 4 bits per
 character are needed. Total bits
 4 * 26 = 104. Savings not as great.

Decoding the File

• How does receiver know what the codes are?
• Tree constructed for each text file.

– Considers frequency for each file
– Big hit on compression, especially for smaller files

• Tree predetermined
– based on statistical analysis of text files or file types

• Data transmission is bit based versus byte based

Decoding the File

• Once receiver has tree it
scans incoming bit stream

• 0 ⇒ go left
• 1 ⇒ go right

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6 8

10
16

26

101000110111101111
01111110000110101

Summary

• Huffman coding is a technique used to compress files
for transmission

• Uses statistical coding
– more frequently used symbols have shorter code words

• Works well for text and fax transmissions

	Huffman Coding: �An Application of Binary Trees and Priority Queues
	Encoding and Compression of Data
	Purpose of Huffman Coding
	The Basic Algorithm	
	The Basic Algorithm	
	Slide Number 6
	Slide Number 7
	The variable-length code
	Code
	Decoding
	Decoding
	Decoding Example
	Prefix-Codes
	Prefix Code
	The (Real) Basic Algorithm
	Building a Tree�Scan the original text
	Building a Tree�Scan the original text
	Building a Tree�Scan the original text
	Building a Tree�Prioritize characters
	Building a Tree�Prioritize characters
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Building a Tree
	Encoding the File�Traverse Tree for Codes
	Encoding the File�Traverse Tree for Codes
	Encoding the File
	Encoding the File�Results
	Decoding the File
	Decoding the File
	Summary

