

/*
 * List Abstract Data Type (ADT)
 *
 * This interface defines a List ADT that supports a sequence of elements with the ability to perform
 * insertion, deletion, access, and traversal operations. It does not specify the internal implementation,
 * allowing different data structures (such as arrays or linked lists) to implement it according to their
 * own space/time trade-offs.
 *
 * The key design feature of this ADT is the concept of a "current position," which enables element access
 * and movement through the list. The operations defined below provide a foundation for list management
 * with flexibility for different use cases.
 *
 * Variants of List Implementations:
 * 1. **Array-based List**: Uses a contiguous block of memory to store elements.
 * - Advantages: Fast random access, low overhead for accessing elements.
 * - Disadvantages: Fixed capacity unless dynamically resized, costly insertions/removals in the middle.
 *
 * 2. **Singly Linked List**: Uses nodes connected by pointers, each containing a value and a reference to the next node.
 * - Advantages: Efficient insertions and deletions at arbitrary positions.
 * - Disadvantages: No direct access to elements (requires traversal), additional memory overhead for pointers.
 *
 * 3. **Doubly Linked List**: Each node contains pointers to both the next and previous nodes.
 * - Advantages: Efficient traversal in both directions, improved deletion performance.
 * - Disadvantages: Increased memory overhead compared to singly linked lists.
 *
 * 4. **Circular Linked List**: Similar to a singly or doubly linked list, but the last node points back to the first node.
 * - Advantages: Useful for buffering applications, round-robin scheduling.
 * - Disadvantages: Requires careful handling of pointers to avoid infinite loops.
 *
 * 5. **Skip List**: A probabilistic data structure that maintains multiple layers of linked lists for fast search operations.
 * - Advantages: Faster search times than normal linked lists, with performance comparable to balanced trees.
 * - Disadvantages: Increased complexity and memory usage.
 */

typedef int ListItemType; //in order to keep thigs simple

class List { // List class ADT
public:
	// Destructor
	virtual ~List() = default;

	/*
	 * Removes all contents from the list, resetting it to an empty state.
	 * This operation should reclaim any allocated memory if necessary.
	 */
	virtual void clear() = 0;

	/*
	 * Inserts an element "it" at the current position in the list.
	 * The client must ensure that the list's capacity is not exceeded.
	 * Shifts existing elements to the right if necessary.
	 *
	 * @param it - The element to be inserted.
	 * @return True if insertion is successful, false otherwise.
	 */
	virtual bool insert(const ListItemType& it) = 0;

	/*
	 * Appends an element "it" at the end of the list.
	 * The client must ensure that the list's capacity is not exceeded.
	 *
	 * @param it - The element to be appended.
	 * @return True if the append operation is successful, false otherwise.
	 */
	virtual bool append(const ListItemType& it) = 0;

	/*
	 * Removes and returns the current element from the list.
	 * Shifts remaining elements to the left if necessary.
	 *
	 * @return The removed element.
	 */
	virtual ListItemType remove() = 0;

	/*
	 * Moves the current position to the start of the list.
	 * After execution, the first element (if any) will be the current element.
	 */
	virtual void moveToStart() = 0;

	/*
	 * Moves the current position to the end of the list.
	 * After execution, the current position is set beyond the last element.
	 */
	virtual void moveToEnd() = 0;

	/*
[bookmark: _GoBack]	 * Moves the current position one step to the left (towards the start of the list).
	 * If already at the beginning, the position remains unchanged.
	 */
	virtual void prev() = 0;

	/*
	 * Moves the current position one step to the right (towards the end of the list).
	 * If already at the end, the position remains unchanged.
	 */
	virtual void next() = 0;

	/*
	 * Returns the number of elements currently in the list.
	 *
	 * @return The length of the list.
	 */
	virtual int length() = 0;

	/*
	 * Returns the index of the current position within the list.
	 *
	 * @return The current position index.
	 */
	virtual int currPos() = 0;

	/*
	 * Moves the current position to the specified index "pos."
	 * If "pos" is out of bounds, the position remains unchanged.
	 *
	 * @param pos - The target position to move to.
	 * @return True if the move is successful, false otherwise.
	 */
	virtual bool moveToPos(int pos) = 0;

	/*
	 * Checks if the current position is at the end of the list.
	 *
	 * @return True if the current position is at the end, false otherwise.
	 */
	virtual bool isAtEnd() = 0;

	/*
	 * Returns the value of the current element in the list.
	 *
	 * @return The value of the current element.
	 */
	virtual ListItemType getValue() = 0;

	/*
	 * Checks if the list is empty.
	 *
	 * @return True if the list contains no elements, false otherwise.
	 */
	virtual bool isEmpty() = 0;

/*
* Retrieves the element at a specified index without modifying the current position.
* If the index is out of bounds, the behavior is undefined and should be handled by implementations.
*
* @param pos - The index of the element to retrieve.
* @return The element at the specified position.
*/
virtual ListItemType get(int pos) const = 0;

};

